http://www.ijaer.com

(IJAER) 2013, Vol. No. 4, Issue No. I, May

ISSN: 2231-5152

A STUDY AND ANALYSIS SIX-SIGMA METHODOLOGIES IN MANUFACTURING INDUSTRIES

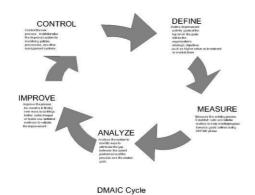
Deepak Bhardwaj¹, Dr. B. Kumar²

¹Research Scholar, Dept of Mechanical Engineering, Sunrise University, Alwar(Rajasthan) ² Professor, IEC, Greater Noida (UP)

ABSTRACT

In today's highly competitive scenarios the markets are becoming global & economic conditions are changing fast. Customers are more quality conscious & demand for high quality product at competitive prices with product variety and reduced lead-time. Companies are facing tough challenge to respond to the needs of customer while keeping manufacturing & other related costs down. The companies are striving for their very survival. Companies can cut down their costs by reducing the production of defective parts. I used 6 sigma methodologies called DMAIC in the manufacturing industries for the production data analysis to improve the productivity by reducing the defect rate and improving the quality of the product.

RESEARCH/DESIGN/METHODOLOGY


A. DMA IC Roadmap

The DMA IC roadmap is extremely versatile. It has been used to improve performances in companies in virtually every industry and in every department within other companies. From manufacturing and maintenance to marketing and human resources, DMAIC (Define, Measure, Analyse, Improve and Control) is a proven discipline for improving processes. However, the Six Sigma DMAIC roadmap also can help in a company's effort to establish a strategic plan for its business. Developing a strategy is critical for establishing business direction. A great deal of work goes into developing strategy and it is regularly reviewed by the company executives. The DMAIC roadmap can help executives establish a disciplined process for creating and executing these strategies.

http://www.ijaer.com

(IJAER) 2013, Vol. No. 4, Issue No. I, May

ISSN: 2231-5152

Purpose: 6 sigma methodologies called DMAIC in the manufacturing industries for the production data analysis to improve the productivity by reducing the defect rate and improving the quality of the product.

RESEARCH LIMITATIONS/IMPLICATIONS

The main hurdles in successful implementation of Six Sigma, in the views of researchers are, One organization's own management and employees, two active supplier participation and three active customers participation. Neither quality information nor the Six Sigma structured improvement procedure has a direct effect on product/service design or process management, but those two practices are found to have a significant effect on the Six Sigma focus on metric which in turn directly affects product/service design and process management (Linderman et al.2003, 2006).

Originality/value: The paper provides an theoretical attempt to adopt the concept of SIX SIGMA methodology in industries.

Introduction Six Sigma is a system of practices originally developed by Motorola to systematically improve processes by eliminating defects. The process was pioneered by Bill Smith at Motorola in 1986. Six σ is originally defined as a metric for measuring defects and improving quality. Development 1980s - US corporations began losing market share to Japanese, 1987 - Motorola pioneered the use of Six Sigma Bill Smith- "Father of Six Sigma" Bob Galvin-CEO of Motorola MAIC Process, 1995- General Electric Jack Welch, CEO of GE Created Six Sigma problem solving approach used today DMAIC Process

Tool used in 6 σ

• Process Flow Chart

What is done or being done

Check Sheet / Tally Sheet

(IJAER) 2013, Vol. No. 4, Issue No. I, May

http://www.ijaer.com

ISSN: 2231-5152

How Often it is done

• Histogram

What does variation look like?

• Graphs! Run Charts

Can the variations be represented in time series?

Pareto Analysis

Which are the big problems?

• Cause and Effect Diagram

what causes the problem?

Control Charts

Which Variation to control and how?

Philosophy

- Know what's Important to the Customer (CTQ)
- Reduce Defects (DPMO)
- Center around Target (Mean)
- Reduce Variation (Standard Deviation)

Six sigma conversion table

http://www.ijaer.com

(IJAER) 2013, Vol. No. 4, Issue No. I, May

ISSN: 2231-5152

Table-1

SIGMA PROCESSES

If you yield is :	Your DPMO is	Your Sigma is
30.9%	690,000	1.0
62.9%	308,000	2.0
93.3%	66,800	3.0
99.4%	6,210	4.0
99.98%	320	5.0
99-997	3.4	6.0

How Do we Arrive at Sigma?

1- Identify the CTOs

"Critical to Quality" characteristics or the Customer Requirements for a product or Service

2- Define Defect Opportunities

Any step in the process where a Defect could occur in a CTQ

3- Look for Defects in a Products or Services

Count Defects or failures to meet CTQ requirements in all process steps

4- <u>Arrive at DPMO</u>

Defects per Million Opportunities

5- Convert DPMO to Sigma

Use the SIGMA TABLE

Table – 2

Sigma Level	DPMO
2	308,537
3	66,807

(IJAER) 2013, Vol. No. 4, Issue No. I, May

4	6,210
5	233
6	3.4

Origin of Six Sigma

Motorola the company that Invented Six Sigma

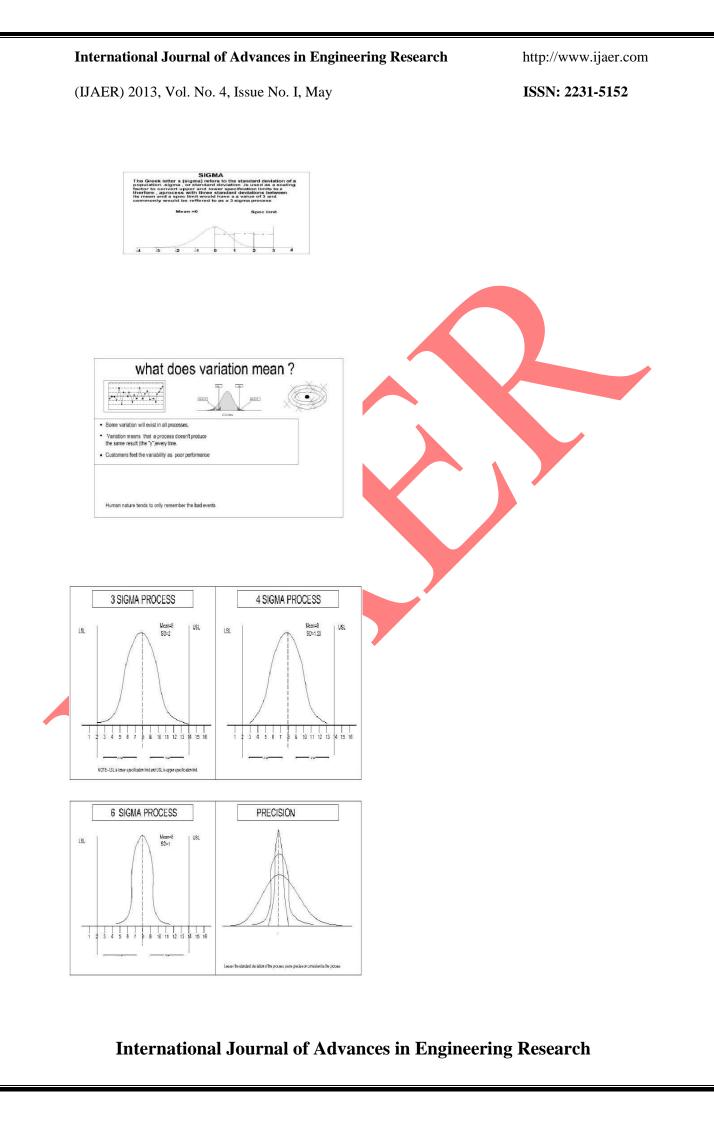
• The term "Six Sigma" was coined by Bill Smith, an engineer with Motorola

• Late 1970s - Motorola started experimenting with problem solving through Statistical analysis

1987 - Motorola officially launched it's Six Sigma program

Concept of SIX SIGMA

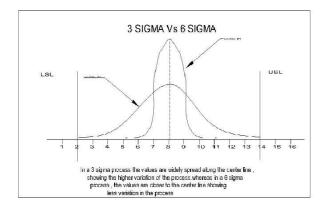
"Sigma" means standard deviation and therefore Six Sigma means six standard deviations. The objective of Six Sigma is only 3.4 defects (or errors) out of every million defect opportunities. This translates into 99.99966% perfection. Since most private manufacturing companies in Vietnam are currently around Three Sigma or even lower in some cases, a process improvement project using Six Sigma principles may initially aim at Four Sigma or Five Sigma, which would nonetheless result in significant defect reduction. Mekong Capital's Introduction to Six Sigma An important clarification is that Six Sigma measures defect opportunities and not defective products.

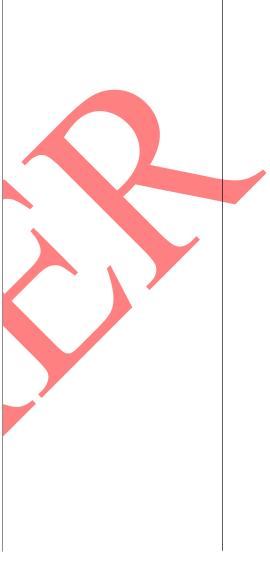

Meaning of a Sigma process

From a sigma process we come to know that at what distance, in terms of the standard deviation, the specification limits are placed from the target value.

International Journal of Advances in Engineering Research

http://www.ijaer.com


ISSN: 2231-5152



http://www.ijaer.com

(IJAER) 2013, Vol. No. 4, Issue No. I, May

ISSN: 2231-5152

http://www.ijaer.com

(IJAER) 2013, Vol. No. 4, Issue No. I, May

ISSN: 2231-5152

1 DMA IC Roadmap

The DMA IC roadmap is extremely versatile. It has been used to improve performances in companies in virtually every industry and in every department within other companies. From manufacturing and maintenance to marketing and human resources, DMAIC (Define, Measure, Analyze, Improve and Control) is a proven discipline for improving processes.

The Define Phase

The Define stage sets the blueprint for the strategy. Executives define the current status of the company and how it is presently operating as well as the current market or economic situation. Externally, the voice of the customer needs to be confirmed. Political, economic, social and technical trends (sometimes referred to as PEST analysis) are recognized and the strength and weaknesses of the competition are established.

The Measure Phase

A company's performance is best measured quantitatively. As in business improvement projects, the Measure phase confirms the current baseline operation. During this stage, data is gathered to show how the company is tracking.

The Analyze Phase

Careful analysis of the business and the market will help leadership determine the best strategy for the company. Opportunities, threats, strengths and weaknesses, which are validated with data from the measure stage, are analyzed in detail.

(IJAER) 2013, Vol. No. 4, Issue No. I, May

http://www.ijaer.com

ISSN: 2231-5152

The Improve Phase

Strategy needs to be continuously improved as customer, economic and technical factors change. After analyzing how the V's are affected by the company's X's leaders utilize the information to either modify strategy or stay the course with the existing strategy.

The Control Phase

It is important to closely monitor and manage company performance against strategy.

This is to ensure the company follows the path that leadership wants to take.

GENERAL TOOL USED

D-Define Phase: Define the project goals and customer (Internal and external) deliverables.

Define Customers and Project Charter

(IJAER) 2013, Vol. No. 4, Issue No. I, May

http://www.ijaer.com

ISSN: 2231-5152

Requirements (CTQs)			
Develop Problem Statement,	_		
Goals	Process Flowchart		
and			
Benefits			
Identify Champion, Process			
Owner	SIPOC Diagram		
and Team			
Define			
Resources	Stakeholder Analysis		
Organizatio			
Evaluate Key nal			
~	structure		
Proje			
•	CTQ Definitions		
Milestone			
S			
S Develop High Level Process	of Custome		
Develop High Level Process	of Custome		
Develop High Level Process Map	Voice the r Gathering		C
Develop High Level Process Map M-Measure Phase: Measure problem	Voice the r Gathering the process to determine	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni	Voice the r Gathering the process to determine Process	ne current p	perfori
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t	Voice the r Gathering the process to determine	ne current p	perfori
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and	Voice the r Gathering the process to determine Process	ne current p	perform
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t	Voice the r Gathering the process to determine Process Flowchart	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics	Voice the r Gathering the process to determine Process Flowchart Collecti	ne current I	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics Detailed Process Map of	Voice the r Gathering the process to determine Process Flowchart Collecti Data on Plan/	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics Detailed Process Map of	Voice the r Gathering the process to determine Process Flowchart Collecti	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics Detailed Process Map of	Voice the r Gathering the process to determine Process Flowchart Collecti Data on Plan/	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics Detailed Process Map of Appropriate Areas Develop Data Collection	Voice the r Gathering the process to determine Process Flowchart Collecti Data on Plan/	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics Detailed Process Map of Appropriate Areas Develop Data Collection	Voice the r Gathering the process to determine Process Flowchart Collecti Data on Plan/ Example	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics Detailed Process Map of Appropriate Areas Develop Data Collection Plan Validate the Measurement	Voice the r Gathering the process to determine Process Flowchart Collecti Data on Plan/ Example Benchmarking	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics Detailed Process Map of Appropriate Areas Develop Data Collection Plan Validate the Measurement	Voice the r Gathering r the process to determine Process Flowchart Collecti Data on Plan/ Example Benchmarking Syste	ne current p	perfor
Develop High Level Process Map M-Measure Phase: Measure problem Define Defect Uni Opportunity, t and Metrics Detailed Process Map of Appropriate Areas Develop Data Collection Plan Validate the Measurement System	Voice the r Gathering r the process to determine Process Flowchart Data on Plan/ Example Benchmarking Syste Measurement m	ne current p	perform

(IJAER) 2013, Vol. No. 4, Issue No. I, May

http://www.ijaer.com

ISSN: 2231-5152

ng	Custome	r
Relationship	Gathering	
Determin Process	Process Sigma	-
e Capability	and Calculation	
Sigma Baseline		

A- Analyze Phase: Analyze and determine the root cause(s) of the defects.

Define Performance	
Objectives	Histogram
Identify Value / Non-Value	
Added	Pareto Chart
Process Steps	
	Time Series/ Run
Identify Sources of Variation	Chart
Determine Root Cause(s)	Scatter Plot
Determine Vital Few x's,	
Y=f	Regression Analysis
(x)Relationship	
	Cause and Effect/
	Fishbone
	Diagram
	5 Whys

SCOPE OF FUTURE WORK

There is lots of work that we can do in this context. We can apply the DMAIC in other Quality system like inventory control, Lean manufacturing, etc. I have apply this in the manufacturing industry in which we have taken the mass production system like bottling Manufacturing plant. The work done was on trial version, so in future I will be explore the remaining tool like Failure mode & Effect analysis (FMEA), Design of experiment(DOE), Hypothesis testing and Multivariate analysis I will try to get the full version so our work will be more effective. I have found that this can be extended at the design level also so in near facture I will use six sigma not at process level but for product design.

Now days the six sigma is also used in service industry as used by ICICI bank and hotel industry. Minitab will also be effective in service industry case also but in these industries the data analysis is quite common with the help of six sigma methodology and using the Minitab as the data analysis tool. Future exploration is become more important because the job

(IJAER) 2013, Vol. No. 4, Issue No. I, May

http://www.ijaer.com

ISSN: 2231-5152

scenario in India itself. In near future I will apply the Minitab software with the help of six sigma for more challenging problems. Another dimension of future work will be cost and benefit analysis. Major cost factor Involves in training, men's hours and the consultant fees etc. Data say that out return on investment (ROT) is more than 70%. Also the break even period is very short. So work to be explore in near future are

REFERENCES

- [1] Wangetal, Conference of International Foundation for Production Research-Asia Prafic Region 2012 Patong Beach, Phuket, Thailand Dec. 2012,
- [2] Linderman, K.Schroeder, R.G Zaheer, S. and Choo, A.S.

(2003). "Six Sigma: a goal-theoretic perspective." Journal of operation management.

- [3] Hahn, G.J., Hill, W.J., Hoerl, R.W. and Zinkgraf, S.A. (1999). "The impact of six sigma improvement- a glimpse in the future of statistics. "The American statistician."
- [4] B.Majoomdar "Process variation & six sigma" productivity vol-43, no.2.
- [5] Harry Mikel and Schroeder Richerd"Six Sigma- The breakthrough management strategy revolutionizing the world top corporations, 1998.
- [6] Victor.O.K.Li fellow, IEEE"hints on writing technical papers and making presentations.
- [7] Frederick D Buggie "Beyond six sigma". Journal of management in Engineering.
- [8] "Beyond six sigma" Quality & Reliability Engineering International SQC & OR division.
- [9] TadikamalaP "The confusion over six sigma Quality", quality progress November 1994.
- [10] Billups. M."Letters", Quality progress, August (1993).
- [11] Mitra Amitava,"Fundamentals of Quality control and Improvement" Pearson Education Asia 2005.
- [12] Rowentree Derek, "Statistic without tears, an introduction non mathematician", Penguin books 1991.
- [13] Brue Greg & Howes Rod, "The McGraw Hill 36-hour six sigma course".